Friday, July 16, 2010

Was our universe born inside a black hole in another universe?


The current explanation of the universe's origins relies on clumsy assumptions and can't explain most subatomic particles. A small tweak to general relativity solves these problems - and seemingly proves the universe must have come from a black hole elsewhere.

As it stands right now, the explanation for the universe's beginnings is built around a combination of Einstein's general relativity and observation of the ancient universe. Mixing these two theories together creates some problems - for instance, the universe is impossibly large according to its current rate of expansion, so astrophysicists have to invoke the idea of inflation, in which the early universe expanded at a tremendous rate within the first second after the Big Bang.

General relativity, however, can't explain inflation, so another theory is required to account for it. There's nothing technically wrong with that, but it's an inelegant solution, and physicists tend to prefer an all-encompassing explanation to a bunch of piecemeal solutions. That's not the only issue with the current explanation - it can't deal with many properties of subatomic particles, consigning them entirely to the realm of quantum mechanics.

Nikodem Poplawski of Indiana University thinks solving the latter problem can also solve the former, and that's just the start of the craziness. In a new paper, he explains that the standard version of general relativity totally ignores the intrinsic momentum of subatomic particles like protons and neutrons, but a modified version known as the Einstein-Cartan-Kibble-Sciama theory of gravity solves that problem. The theory states these particles interact repulsively, creating tiny amounts of a force called torsion.

Read the Article